一覧に戻る

トラマガ

Vol.388 <前編>翻訳者・大学教授 山田優さん

機械翻訳は翻訳者のライバルであり味方でもある。
まずはその現状をよく知ることが何よりも重要。

後編を読む→


(2017年4月5日更新)
現在、関西大学外国語学部の教授として翻訳学を研究している山田優さん。研究テーマは「翻訳のプロセス研究」といって、人間が翻訳するとき、脳がどのように働いているのかを研究しているそうです。この研究の成果は、人工知能(AI)を搭載した最新の機械翻訳の開発にも役立てられるといいます。実用化に向け、さらなる高みを目指して着々と開発が進んでいる機械翻訳。その現状はどのような段階なのか、また翻訳業界にどのような変化をもたらすのか、山田さんにお話を伺いました。

機械翻訳は人工知能の時代へ突入、さらなる進化を目指す

――山田さんの研究と関係の深い機械翻訳について、まず教えていただけますか。機械翻訳はいつ頃から開発されるようになったのでしょうか?

機械翻訳の開発は、1950年代から60年代にかけて行われていたアメリカの国家プロジェクトが始まりだと言われています。米ソの冷戦時代、アメリカ国家がロシア語をすばやく解読するために機械翻訳を開発しようとしたのです。機械に文法を学ばせれば翻訳できるだろうという発想で、いわゆる「ルールベース」と呼ばれるものでした。しかし、翻訳者の皆さんならご存じのとおり、文法を当てはめて、単語を置き換えるだけでは翻訳はできません。それで、目的は達成されないまま国家プロジェクトは終焉を迎えることになります。
その後も世界中の研究者が細々と機械翻訳の研究を続けます。日本でも1982年に科学技術庁が機械翻訳プロジェクトを始動させました。京都大学や富士通などの大企業も多数参加して、1985年まで研究開発は続けられました。ここで取り入れられたのは「用例ベース」です。現在の翻訳支援ツールの考え方と似ているのですが、原文と訳文のペアがいくつもあり、その中から似ている部分を選び出し、利用するというものです。
そうこうしているうちにインターネットの時代が到来し、機械翻訳は飛躍的に進歩することになります。それまでは元となる用例の数が限られていたのに対し、インターネットを活用することで大量の用例を集めることが可能になり、それを使った「統計ベース」の機械翻訳が登場したのです。これが2006年に登場したGoogle翻訳です。機械翻訳の歴史においては革命的な出来事でした。

――Google翻訳なら使ったことがあります。機械翻訳が身近になったのは、やはりインターネットを介してですね。

そうですね。それで、この「統計ベース」の機械翻訳は、データの量が増えれば増えるほど精度が上がると予測され、機械翻訳の実用化が一気に進むのではないかと期待されていました。ところが、データをどんどん投入していっても、あるレベルにまで達するとそれ以上は精度が上がらないことがわかってきたのです。そこで、「統計ベース」にもう一度昔の「ルールベース」を組み合わせたハイブリッドタイプを試すなど、さまざまなものが模索されました。しかし、なかなかうまくはいきませんでした。
その壁を破ったのが、またしてもGoogleでした。実は、日本でも昨年(2016年)秋からGoogle翻訳は次なる段階へと進化しているのですが、ご存じでしたか? 今度は「ニューラルネット・マシン・トランスレーション(ニューラルネット機械翻訳、略してNMT)」と呼ばれるもので、いわゆるAI(人工知能)を使った仕組みになっています。

――人工知能ですか。ルール、用例、統計と、ここまでは概念としては理解できるのですが、人工知能というとピンときません。どういう仕組みなのでしょう?

人間の脳が物を認識する過程を人工知能で再現し、翻訳に応用しているということです。例えば、目の前にコーヒーがあったとして、われわれ人間は「黒いもの」「液体」「苦いもの」「飲むもの」などさまざまな側面から目の前のものを認識します。それぞれの特徴は分散され、脳の中に無数にある神経細胞(ニューロン)に格納されます。1つのニューロンの中には1つの特徴だけしか格納できません。そして脳はその先の階層で、「黒いもの」は「どのくらい黒いのか」を判断し……と、このように幾重にもなった階層で脳は複雑な事象を認識していきます。それで、次にまた黒い液体を見たとき、脳に蓄積された情報によりニューロン同士が結びついて「これはコーヒーではないか」という判断を下すのです。
人工知能にもいろいろな考え方がありますが、これはディープラーニング(深層学習)という考え方です。統計ベースの機械翻訳の段階まででは、原文と訳文の二階層しかなかったのに対して、ニューラルネット機械翻訳では、さらに深い階層や複雑に分岐した階層にまで入り込んで認識が行われるように設計されているというわけです。

――なるほど。では、実際の翻訳では、人工知能はどのように機能するのでしょうか?

たとえば「僕たちは同じ釜の飯を食べた仲である」という日本語の文章を英語に翻訳するとします。人間が翻訳するとしたら、このような思考になるのではないでしょうか。
「直訳すれば“We are the friends who ate rice from the same rice cooker.”だが、果たしてこれで通じるだろうか? 意訳して“We are best friends.”とするのはどうだろう?」
ここで“We are best friends.”という訳にたどり着けるのは、「同じ釜の飯を食べた仲」と「親友である」というのが共通の特徴を有していることを人間は学習によって知っているからです。AIによる機械翻訳であれば、人間の思考と同じような、このような翻訳が可能になると期待されています。もちろん、まだ開発段階で完全に人間の脳を再現できているわけではありませんが、機械翻訳はAIの時代に入ったことは確実で、Googleだけではなく世界中の開発者がAIを取り入れた開発を進めていますので、近い将来、世界中で新たな機械翻訳が出てくるのは確実だと思います。

Translation for everyone! 機械翻訳が翻訳市場を拡大する

――山田さんは、実際に翻訳会社や企業と一緒に機械翻訳の導入プロジェクトを数多く手がけていらっしゃるそうですね。いま現在、機械翻訳の実用化はどれくらい進んでいるのでしょう?

まず、現状で最も進んだ機械翻訳はニューラルネットを取り入れたGoogle翻訳であることは間違いありませんが、これは常にインターネットに繋がっていますので、多くの企業は機密保持の観点からGoogle翻訳を使うことに積極的ではありません。
一方で、統計ベースの機械翻訳のほうは、例えば自社に過去に翻訳したマニュアルの原語と訳語のセットがあれば、そのデータをもとに自社専用の機械翻訳システムを構築することは難しくありません。蓄積しているデータ量が豊富であればという条件付きですが、技術的にはかなり精度の高いものができます。
ただ、だからといってそれがすぐに普及するかというと、それは何ともいえません。私自身は数社のプロジェクトに関わってきており、実際に導入事例を目撃してきているので「導入されつつあります」と言えなくもないですが、世の中全体では、まだそれほど進んでいないといったところでしょうか。

――統計ベースの機械翻訳も、かなり精度が上がってきているのに、それほど導入が進んでいないというのは、どういう理由からですか?

これは私個人の見解ですが、これまで翻訳会社に翻訳を発注していた会社が、簡単に機械翻訳に切り替えるということは、あまりないように思います。それは精度だけの問題ではなく、人間の行動原理として、あるいは企業文化として、そう簡単に変えることはないと思うからです。もちろん、機械翻訳が画期的に良くなったら別でしょうが、今はまだ、そういう段階ではありませんから。
たとえていえば、こういうことです。歯磨きの代わりにうがいをするだけで同じ効果が得られる薬が開発されたからといって、これまで当たり前のように歯磨きをしてきた日本人全員がすぐにうがい薬に移行するかといえば、そうはならないですよね。歯磨きのままでも特に不都合はないから、習慣化している歯磨きを続ける人も多いはずです。しかし、そもそも歯磨きの習慣がなく、虫歯で苦しむ人が多くいた未開の地の住人にうがい薬を配ったら、爆発的に普及するかもしれない。
それを翻訳業界に置き換えて考えると、今まで翻訳会社に依頼してきちんと翻訳者に翻訳してもらっていた会社がすぐに機械翻訳に移行することはあまりないといえます。今まで通りの翻訳者の翻訳にある程度満足していて、まだ機械翻訳に切り替えるメリットをそれほど感じていないでしょうから。しかし一方で、「翻訳したい文書はあるけれど、コストがかかるからやめておこう」「そもそも翻訳ってどうやって依頼すればいいのかわからない」といった会社もあったはず。いや、むしろそういう会社のほうが多いはずです。そういう会社にこそ機械翻訳が役立つことでしょう。Translation for everyoneです。そういった層に機械翻訳はより速く浸透していくような気がしています。翻訳市場を機械翻訳が喰うのではなく、拡げてくれるかもしれない。
もちろん機械翻訳の精度がもっともっと上がれば、既存の翻訳市場を喰う可能性も大いにあるので、翻訳者はそのための準備をしておく必要があると思いますが。

――もう少し具体的に、機械翻訳が浸透しやすい分野には、どのようなものが考えられますか?

例えば、クライシス・シナリオつまり危機発生を想定したシナリオに、機械翻訳が活用されています。1995年に起きた阪神淡路大震災のときに、外国人の死亡率が日本人の約2倍だったというデータがあります。避難所はどこか、食料や水がどこで配布されるか、そういう情報が日本語と英語では出されていたのですが、英語がわからなかった外国人には情報が届かなかったからです。インターネットが普及した今、役所が出す情報が機械翻訳により瞬時に数カ国語に翻訳されるようになれば、被害を減らすことができます。そういうところでは、どんどん導入が進んでいます。
それから機械翻訳の歴史で紹介したとおり、戦争など大きな出来事によってプロジェクトが進むことがあります。直近では東京オリンピックがそのひとつですね。いままさに、ニューラルネット機械翻訳をベースにさまざまな機器が開発されています。

――機械翻訳の際に、人間が受け持つ仕事というのはありますか?

プリエディットとポストエディットという仕事が発生します。機械翻訳に入れる前の原文を編集する作業(プリエディット)と、機械翻訳が出してきた訳文を編集する(ポストエディット)仕事です。例えば先に紹介した役所がホームページ上に出す情報を数カ国語に機械翻訳するような場合は、機械が翻訳しやすいように、短く簡単な構造の原文を書いておくというプリエディットが重要になってきます。
ポストエディットに関しては、そうですね、翻訳会社が翻訳者に依頼するとき、必ず最後にチェッカーが訳文をチェックしますよね。その工程と同じだと言えます。人間の翻訳でも100%ということはまずなく、誤字脱字、訳抜け、解釈の間違いなど、何かしらミスがありますから。機械翻訳の場合は、そのミスの種類が人間の翻訳とはちょっと違って、だいたいうまくできているのに、ときどき辻褄の合わないトンチンカンな訳が出てきて、チェッカーさんが怒っちゃう、という感じでしょうか(笑)。

――それから、これはとても気になるところなんですが、機械翻訳の開発が進んだ場合、既存の翻訳者の仕事を取ってしまうおそれはあるのでしょうか?

ないとは言えません。翻訳者にもいろいろ特徴やレベルの違いがありますから、機械翻訳の精度が翻訳者を上回ることは十分に考えられます。そんな時代ですから、翻訳者はただ目の前にある文書を正確に翻訳するだけでは生き残れません。グローバル化の中で求められる翻訳を提供するためには、単なる翻訳スキルだけではなく、言語学、テクノロジー、文化論などを総括的に身につけ、総合的な視点でものを見て、最適な翻訳サービスを提供できる翻訳者になる努力が必要ではないかと思います。


ここ数年の機械翻訳の進化には目覚ましいものがあるようです。後編では山田さんが研究する翻訳学の内容や、大学の生徒と一緒に取り組んだユニークな活動などもご紹介いたします。どうぞ、お楽しみに!

このインタビューもおすすめ!

<やまだまさる>

ウエストバージニア大学卒業後、アメリカの自動車会社で通訳として働く。日本に帰国後、外資系自動車会社で社内通訳翻訳者、自動車開発のプロジェクト・マネージャーの職に就く。ドキュメント制作会社でローカリゼーションのプロジェクト・マネージャーとして勤務した後、2007年に立教大学大学院異文化コミュニケーション研究科に進む。同科博士後期課程修了。博士(異文化コミュニケーション学/翻訳通訳学)。関西大学外国語学部/外国語教育学研究科教授。日本通訳翻訳学会(JAITS)理事。研究の関心は、翻訳テクノロジー論、翻訳プロセス研究、翻訳通訳教育論)など。


<関連著書>


『翻訳通訳研究の新地平―映画、ゲーム、テクノロジー、戦争、教育と翻訳通訳―』 (晃洋書房)


『よくわかる翻訳通訳学』 (ミネルヴァ書房)


<関連リンク>

関西大学 外国語学部
山田研究室
株式会社 翻訳ラボ


PICK UP

フェローでの学び方 翻訳入門<ステップ18> オンライン講座

PAGE TOP